Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
ERS Monograph ; 2021(94):39-68, 2021.
Article in English | EMBASE | ID: covidwho-2325296

ABSTRACT

The recent and recurrent spillover of three highly pathogenic coronaviruses, SARS-CoV-1, MERS-CoV and SARS-CoV-2, into human populations has stressed the importance of pandemic preparedness. Here, we describe how, in the absence of antiviral therapeutic options against coronaviruses, early clinical investigations have focused on the prompt repurposing of approved antiviral therapies. We discuss how, despite international collaborative efforts, their outcomes so far have been disappointing as none of the early drugs tested demonstrated effective clinical efficacy. We also outline innovative strategies and tools developed to fast-track development of novel classes of antivirals. These capitalise on a deeper understanding of viral molecular pathogenesis and how coronaviruses hijack the host cellular machinery to maximise their replication and counteract host defences. Collectively, these approaches are crucial to identify and validate novel targets for therapeutic interventions and expand the repertoire of broad-spectrum antiviral agents, so that these can be promptly deployed for current and future pandemics.Copyright © ERS 2021.

2.
Open Forum Infectious Diseases ; 9(Supplement 2):S777, 2022.
Article in English | EMBASE | ID: covidwho-2189968

ABSTRACT

Background. Which components of the immune response to SARS-CoV-2 vaccination best protect against subsequent infection remains unclear. We explored SARS-CoV-2 specific antibody and B-cell responses post 3rd dose vaccine and their relationship to subsequent SARS-CoV-2 infection. Methods. In a multicentre prospective cohort, adult subjects provided samples before and 14 days (d14) post 3rd dose vaccine with Pfizer-BioNTech 162b2. At 18-22 weeks post vaccine, subjects self-reported SARS-CoV-2 infection (confirmed by PCR or antigen test). We used electrochemiluminescence assays to quantify antibodies to SARS-CoV-2 spike subunit 1 (S1), subunit 2 (S2) and receptor-binding domain (RBD) in plasma (reported inWHOIU/mL). In a subset of subjects, we assessed SARS-CoV-2 specific differentiated B-cell (plasma cell) and memory B-cell responses from peripheral blood mononuclear cells. Unstimulated plasma cells, and memory B cells stimulated with R848 and IL2, were seeded on plates coated with RBD or full Spike antigen and antigen-specific responses measured by ELISpot (Mabtech ELISpot, Sweden). We compared between group differences by Wilcoxon signed rank or Mann-Whitney tests. Data are median [IQR] unless specified. Results. Of 133 subjects (age 43 [32-50], 81.2% female (table 1), 77 subjects in the B-cell subgroup (table 2)), 47 (35.3%) reported SARS-CoV-2 infection post 3rd vaccine. Antibody titres, plasma cell and memory B-cell responses all increased significantly at d14 post 3rd vaccine (Table 1 & 2, all P< 0.001). Although d14 antibody titres did not differ in those with and without subsequent infection (table 1), those reporting subsequent infection had significantly lower d14 RBD-specific plasma cells and a lower proportion of RBD-specific memory B-cells (Figure 1a-b, both P< 0.05). Similar results were observed with full-spike-specific memory B-cell responses (Figure 1d). The differences persisted when the non-infected group was restricted only to those reporting a confirmed close contact (n=26). Conclusion. Infection following 3rd dose vaccine is associated with lower d14 circulating and memory B cell responses, but not antibody titres, suggesting B-cell responses better predict protection against subsequent SARS-CoV-2 infection.

3.
Open Forum Infectious Diseases ; 9(Supplement 2):S447, 2022.
Article in English | EMBASE | ID: covidwho-2189712

ABSTRACT

Background. Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated postinfection/post-vaccination. Here we describe a novel medium-throughput flow cytometry based micro-neutralisation assay to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type (D641G) and Variants of Concern (VoC) in convalescent/vaccinated populations. Methods. Micro-Neutralisation assay (Micro-NT) was performed in 96-well plates using clinical isolate 2019-nCoV/Italy-INMI1, D641G (SARS-CoV-2/human/ IRL/AIIDV1446/2020) and/or VOCs Beta (SARS-CoV-2/human/IRL/AIIDV1752/ 2021) and Omicron (SARS-Cov-2/human/IRL/AIIDV2326/2021). Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, halflog) from 1/20 and pre-incubated with SARS-CoV-2 (1h, 37degreeC). Virus-plasma mixture were added onto VERO E6/VERO-E6 TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation,fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) was determined using four-parameter logistic regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against WHO anti-SARS-CoV-2 Immunoglobulin Standards. Results. Using WHO Standards with low, medium or high anti-SARS-CoV-2 IgG, both Micro-NT and PRNT achieved comparable NT50 values (Table 1). Micro-NT was found to be highly reproducible (inter-assay CV of 11.39%). Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we achieved an assay sensitivity of 90% and specificity of 81%. We demonstrated that Micro-NT has broad dynamic range differentiating NT50s < 1/20 to > 1/5000 (Figure 1). We could also characterise immune-escape VoC, observing up to 10-fold reduction in NT50 against Beta (Figure 2). Table 1: NT50s of Low, Medium and High Titre Anti-SARS-CoV-2 IgG Standards measured against Live SARS-CoV-2 using PRNT and Micro-NT Neutralising Capacity of low, medium and high-titre anti-SARS-CoV-2 IgG (WHO, International Standards) against live SARS-CoV-2 (2019-nCoV/Italy-INMI1) measured using PRNT and Micro-NT Assays on Vero E6 cells, as well as the potency of NAbs in each sample in International Units (IU/ml) as determined by the WHO. Figure 1: Dynamic Range of Micro-NT Micro-NT has a broad Dynamic Range, distinguishing low (A), medium (B) and high (C) neutralising plasma samples against live SARS-CoV-2 (2019-nCoV/Italy-INMI1) from a cohort of COVID-19 convalescent individuals (AIID cohort), as well as negative samples from COVID-19 naive samples (D). Graphs show 3 representative samples of each NT50 range. (E) shows the population distribution of 190 Convalescent plasma samples as measured by Micro-NT on Vero E6 cells. Figure 2: Reduced Neutralisation Capacities measured against SARS-CoV-2 VoC using Micro-NT Low (A), Medium (B) and High (C) anti-SARS-CoV-2 IgG (WHO Standards) show different neutralising capacities against WT (D614G) SARS-CoV-2 and variants Beta and Omicron, measured using Micro-NT on Vero-E6-TMPRSS2 cells. Conclusion. Our flow-cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, an important evaluation endpoint in clinical trials. It has higher throughput (96 well format versus 12 well) and reduced infection time (18h vs 48-96h) compared to the gold standard PRNT.

4.
Open Forum Infectious Diseases ; 9(Supplement 2):S206-S207, 2022.
Article in English | EMBASE | ID: covidwho-2189629

ABSTRACT

Background. A wide array of assays to detect the serologic response to SARS-CoV-2 have been developed since the emergence of the pandemic. The majority of these are either qualitative or semi-quantitative, detect antibodies against one antigenic target, and are not adaptable to new antigens. Methods. We developed a new, multiplex immunoassay to detect antibodies against the receptor binding domain, S1 and S2 spike subunits and nucleocapsid (N) antigens of SARS-CoV-2 (the CEPHR SARS-CoV-2 Serology Assay). This assay uses electrochemiluminescence technology which allows for a broad dynamic range, and a linker format which allows for the addition of new antigenic targets. We tested this assay on a series of biobanked samples and validated its performance against the Abbott SARS-CoV-2 IgG and Abbott SARS-CoV-2 IgG II assays, and the MesoScale Diagnostics V-PLEX SARS-CoV-2 Panel 2 Kit. Results. Participant demographics are shown in Table 1. The mean (standard deviation (SD)) intra-assay (within plate) coefficient of variation (CV) of 80 plasma samples run on the same plate was 3.9% (2.9) for N, 3.8% (6.2) for RBD, 3.8% (5.9) for S1 and 3.9% (5.3) for S2. The mean (SD) inter-assay CV derived from 5 samples run across 3 days by two different operators was 11% (6.5) for N, 13% (5.7) for RBD, 14% (8.9) for S1 and 13% (5.1) for S2. In the convalescent group (n=193), overall sensitivity for each assay was;RBD 82% (95% CI 76-87), S1 86% (81-91%), S2 88% (83 - 92%) and N 72% (64 - 78%). Sensitivity improved when analysis included only individuals who were sampled more than 14 days from onset of symptoms (n=166), RBD 87% (81 - 95%), S1 91% (85 - 95%), S2 91% (85 - 95%) but not for the N-target (73% (66-80%)). In vaccinated individuals (n = 58), 100% (94-100%) had both detectable RBD and S1 antibodies. Overall specificity was 96% (87-99%) for RBD, 90% (78-97%) for S1, 94% (84-99%) for S2 and 90% (78-97%) for N. There was excellent correlation between the Abbott IgG II and both CEPHR anti-RBD IgG (rho 0.91) and CEPHR anti-S1 IgG (rho 0.9, both p < 0.001, Figure 1.) and the V-PLEX full spike and both CEPHR RBD IgG (rho 0.83) and S1 IgG (rho 0.82, both p < 0.001, Figure 4). Conclusion. The CEPHR SARS-CoV-2 Serology Assay is a robust, customisable, multiplex serologic assay for the detection of several different IgG specific to SARS-CoV-2.

5.
Topics in Antiviral Medicine ; 30(1 SUPPL):102, 2022.
Article in English | EMBASE | ID: covidwho-1880437

ABSTRACT

Background: Although presence of SARS-CoV-2 neutralising antibodies can provide protection against development of COVID-19, how reflective circulating anti-SARS-CoV-2 antibody levels are of underlying neutralising capacity, and whether a threshold exists to predict sufficient neutralising capacity remains unclear. Methods: In plasma from individuals with PCR-confirmed COVID-19 recruited to the All Ireland Infectious Diseases Cohort Study, we measured IgG concentrations against RBD, Spike protein sub-unit 1 and 2 (S1, S2) and Nucleocapsid (NC) using multiplex electrochemiluminescence (normalised to World Health Organisation reference serum as IU/mL). Neutralising capacity was measured against live SARS-CoV-2 virus (clinical isolate 2019-nCoV/Italy-INMI1) by determining the maximum plasma dilution required to maintain 50% inhibition of infection of Vero E6 cells (50% Neutralisation Titre (NT50)), by flow cytometry-based micro-neutralisation assay. Given that the Beta SARS-CoV-2 variant of concern (VOC) reduces neutralising activity up to six fold, we estimated a NT50 of 1:1000 against wild type SARS-CoV-2 would maintain neutralising activity against VOC. We used Spearman correlation and linear regression to model relationships between NT50 and IgG concentrations. Data are presented as median (IQR) unless specified. Results: In 190 individuals (age 50 (40-64) years, 55% female, time from symptom onset 98 (35-179) days), NT50 most highly correlated with anti-RBD IgG (Rho 0.81 p<0.001, Fig 1a) compared with other IgG classes (S1;Rho 0.8, S2;0.73, NC;0.72, all p<0.001). Median RBD titre was 246 (71-662) but trended lower over time, with a median of 319 (61-1012) IU/ml at 0-90 days, 244 (86-523) IU/ml at 90-180 days and 157 (80-364) IU/ml at >180 days post symptom onset respectively (p=0.08, Fig 1b). RBD IgG titres of 476 IU/ml corresponded to a NT50 of 1:1000. Overall, RBD ≥476 IU/ml predicted NT50 ≥1:1000 with a sensitivity of 77 (95% CI 65-87)% and specificity 89 (95% CI 82-93)%. This improved in an analysis restricted to convalescent samples (>30 days post symptom onset, n=148), with a sensitivity 88% (95% CI 74-96%) and specificity 90% (95%CI 82-95%) respectively. Conclusion: In convalescent plasma, RBD IgG titres ≥476IU/mL is sensitive and specific for predicting robust underlying neutralising capacity. Further research is required to validate these findings in other cohorts and confirm these thresholds in post-vaccinated individuals.

SELECTION OF CITATIONS
SEARCH DETAIL